Hybrid finite-element/molecular-dynamics/ electronic-density-functional approach to materials simulations on parallel computers
نویسندگان
چکیده
A hybrid simulation approach is developed to study chemical reactions coupled with long-range mechanical phenomena in materials. The finite-element method for continuum mechanics is coupled with the molecular dynamics method for an atomic system that embeds a cluster of atoms described quantum-mechanically with the electronic density-functional method based on real-space multigrids. The hybrid simulation approach is implemented on parallel computers using both task and spatial decompositions. Additive hybridization and unified finite-element/molecular-dynamics schemes allow scalable parallel implementation and rapid code development, respectively. A hybrid simulation of oxidation of Si(111) surface demonstrates seamless coupling of the continuum region with the classical and the quantum atomic regions. 2001 Elsevier Science B.V. All rights reserved. PACS: 82.20.Wt; 62.40.+i; 68.10.Jy
منابع مشابه
Pii: S0010-4655(01)00203-x
A hybrid simulation approach is developed to study chemical reactions coupled with long-range mechanical phenomena in materials. The finite-element method for continuum mechanics is coupled with the molecular dynamics method for an atomic system that embeds a cluster of atoms described quantum-mechanically with the electronic density-functional method based on real-space multigrids. The hybrid ...
متن کاملLarge nonadiabatic quantum molecular dynamics simulations on parallel computers
We have implemented a quantummolecular dynamics simulation incorporating nonadiabatic electronic transitions onmassively parallel computers to study photoexcitation dynamics of electrons and ions. The nonadiabatic quantum molecular dynamics (NAQMD) simulation is based on Casida’s linear response time-dependent density functional theory to describe electronic excited states and Tully’s fewestswi...
متن کاملA divide-conquer-recombine algorithmic paradigm for large spatiotemporal quantum molecular dynamics simulations.
We introduce an extension of the divide-and-conquer (DC) algorithmic paradigm called divide-conquer-recombine (DCR) to perform large quantum molecular dynamics (QMD) simulations on massively parallel supercomputers, in which interatomic forces are computed quantum mechanically in the framework of density functional theory (DFT). In DCR, the DC phase constructs globally informed, overlapping loc...
متن کاملEmbedded divide-and-conquer algorithm on hierarchical real-space grids: parallel molecular dynamics simulation based on linear-scaling density functional theory
A linear-scaling algorithm has been developed to perform large-scale molecular-dynamics (MD) simulations, in which interatomic forces are computed quantum mechanically in the framework of the density functional theory. A divide-and-conquer algorithm is used to compute the electronic structure, where non-additive contribution to the kinetic energy is included with an embedded cluster scheme. Ele...
متن کاملMetascalable molecular dynamics simulation of nano-mechano-chemistry
We have developed a metascalable (or ‘design once, scale on new architectures’) parallel application-development framework for first-principles based simulations of nano-mechano-chemical processes on emerging petaflops architectures based on spatiotemporal data locality principles. The framework consists of (1) an embedded divide-and-conquer (EDC) algorithmic framework based on spatial locality...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001